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Front propagation in laminar flows
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The problem of front propagation in flowing media is addressed for laminar velocity fields in two dimen-
sions. Three representative cases are discussed: stationary cellular flow, stationary shear flow, and percolating
flow. Production terms of Fisher-Kolmogorov-Petrovskii-Piskunov type and of Arrhenius type are considered
under the assumption of no feedback of the concentration on the velocity. Numerical simulations of advection-
reaction-diffusion equations have been performed by an algorithm based on discrete-time maps. The results
show a generic enhancement of the speed of front propagation by the underlying flow. For small molecular
diffusivity, the front speedVf depends on the typical flow velocityU as a power law with an exponent
depending on the topological properties of the flow, and on the ratio of reactive and advective time scales. For
open-streamline flows we find alwaysVf;U, whereas for cellular flows we observeVf;U1/4 for fast advec-
tion andVf;U3/4 for slow advection.
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I. INTRODUCTION

Interface motion and front propagation in fluids occur
many different areas of interest to science and technolo
Among the most important examples we mention chem
reaction fronts in liquids, population dynamics of ecologic
communities ~e.g., plankton in the ocean!, atmospheric
chemistry~ozone hole!, and flame propagation in gases@1#.

The mathematical description of those phenomena
based on partial differential equations~PDE! for the evolu-
tion of the concentration of the reacting species and the e
lution of the velocity field@2#. In principle, the two PDEs
~for the reactants and the velocity field! are coupled, often in
a nontrivial way. An example is given by a recent study
reactants coupled to the Navier-Stokes equation by a Bo
inesq term@3#. A mathematical simplification can be ob
tained assuming that the reactants do not influence the ve
ity field, which evolves independently. In such a limit th
dynamics is still completely nontrivial and it is described
a so-called advection-reaction-diffusion equation. In
most compact model one considers a single scalar fi
u(x,t), which represents the fractional concentration of pro
ucts. The fieldu has a zero value in the regions containi
fresh material only,u is unity where the reaction is over an
there are only inert products left. In the region where
production takes place and reactants and products co-e
the fieldu assumes intermediate values.

The evolution ofu in a reacting fluid with molecular dif-
fusivity D0 is described by the PDE

]

]t
u1~u•“ !u5D0¹2u1

1

t r
f ~u!, ~1!

whereu(x,t) is an incompressible velocity field. The seco
term on the right-hand side of Eq.~1! describes the produc
tion process, characterized by a typical timet r . The shape of
1063-651X/2001/64~4!/046307~13!/$20.00 64 0463
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f (u) depends on the phenomenon under investigation,
we will consider two relevant functional forms.

~1! f (u)5u(12u), or more generally any convex func
tion @ f 9(u),0# such that f (0)5 f (1)50, f 8(0).0, and
f 8(1),0. This is called the Fischer-Kolmogorov-Petrovsk
Piskunov ~FKPP! nonlinearity @4#. The production term is
proportional to the concentration of reactants, 12u, and to
the concentration of products,u.

~2! f (u)5e2uc /u(12u). This is the Arrhenius nonlinear
ity @5#. In this case, the solutionu50 is only marginally
unstable and the parameteruc plays the role of an activation
concentration, since practically no production takes place
products concentrations below that threshold. Productio
still proportional to the concentration of fresh material.

We will always consider initial conditions such tha
u(x,0)→1 exponentially fast asx, the horizontal coordinate
approaches2`, andu(x,0)→0 exponentially fast asx→`.
The initial profile ofu has no variation along the transver
axis. The choice of such an initial condition, for which th
concentration of products has a noncompact support, i
interest because it suppresses all possible flame-quenc
effects that may appear in case~2! ~see, e.g.,@6#!. This al-
lows a direct comparison between FKPP and Arrhenius p
duction terms. There exists a huge literature for the casu
50 ~see, e.g.,@5#!. In that case the physical mechanism f
front propagation resides in the the combined effect of d
fusion and production. Let us indeed consider a o
dimensional situation where a reservoir of fresh materia
located on the right side, whereas on the opposite side
have only inert products. At the boundary between the t
phases, diffusion mixes fresh material and inert produ
broadening the interface. Then, production raises the leve
the concentration of products, thus shifting the interface
the right in this case. The final result is a front propagat
from left to right, eating out fresh material to leave behi
digested, inert products. The front speed at large tim
reaches a limiting valueV0. For the FKPP nonlinearity one
has the exact result
©2001 The American Physical Society07-1



in

o

e
n

i-
s
g
e
,

an

o

e
r-
e

a
e

m

nc

in
e
o

o-

-
in
is
b
f-
-
ic
ou
a

e
ct

ca

in
ed
pen
nd

ting

l

n-

or
w
d

eed

ici-
nce-

q.

r
an

n
q.

r a

ed

e
in

n-
d
se
re-
l
e of
fect

of a
m-
m-
n

M. ABEL, A. CELANI, D. VERGNI, AND A. VULPIANI PHYSICAL REVIEW E 64 046307
V052AD0f 8~0!

t r
, ~2!

whereas for a genericf (u) one has the bounds@4,5,7#

2AD0

t r
f 8~0!<V0<2AD0

t r
sup

u

f ~u!

u
. ~3!

It has to be remarked that the convergence to the limit
velocity is extremely slow for FKPP production@8,9#, there-
fore this case requires special attention especially for n
uniform flow.

In the presence of a moving medium, i.e.,uÞ0, one ex-
pects that the front propagates with an average limiting sp
Vf . A problem of primary interest is to determine the depe
dence ofVf on the properties of the velocity fieldu @10,11#.
In this article we consider front propagation in simple lam
nar flows ~shear flow and systems with cellular structure!
which, in spite of their apparent simplicity, show intriguin
behavior@12–15#. For a given structure of the flow field, w
aim to explore the dependence ofVf on relevant parameters
such as the typical flow velocityU and the production time
scalet r . In terms of adimensional quantities, we look for
expression for the speed enhancementVf /V0 in terms of the
Damköhler number, Da5L/(Ut r), which measures the rati
of advective to reactive time-scales, and in terms of thePé-
clet number Pe5UL/D0, which expresses the relativ
weight of advection and diffusion. We will mainly be inte
ested in the case of large Pe, to highlight the combined
fects of advection and reaction. The two regimes Da!1 and
Da@1 are quite different in nature: in the first case, typic
for slow reaction rates or fast advection, the front interfac
distributed over several length scalesL, and for this reason it
goes under the name of ‘‘distributed reaction zone’’ regi
@16#; in the second case, the front is thin compared toL and
it propagates according to a Huygens-like principle, he
the name of ‘‘geometrical optics’’ regime@16#. We will pro-
vide a detailed analysis of these two regimes, highlight
their differences. In the context of the thin front regime w
can mention, among the many contributions, the works
theG-equation approximation and its relation with the ‘‘ge
metrical optics’’ regime@17,18#, the work on turbulent flows
@10,11#, and the numerical study of front propagation@19,20#
in synthetic turbulence@21#.

A hint to the effect of an underlying flow on front propa
gation is given by the observation that the front speed
creases with the square-root of molecular diffusivity. It
well-known that diffusive transport is always enhanced
incompressible flow, resulting in an effective diffusion coe
ficient Deff.D0 @22–26#. Therefore, it is reasonable to ex
pect that the front speed will be enhanced too. This phys
argument can be upgraded to a mathematically rigor
statement in the case of a ‘‘slow’’ reaction, that is, for D
!1 ~see Sec. II!.

From the mathematical viewpoint, there exist low
bounds to the speed of the front, which confirm the expe
tion that the flow enhances front propagation@27,28#. These
bounds take different forms according to the topologi
04630
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structure of the flow field. One can distinguish two ma
classes: cellular flows, characterized by having clos
streamlines only, and percolating flows, which possess o
streamlines~shear flows are a particular case of this seco
class, having only open streamlines!. For cellular flows, it
has been shown thatVf /V0>C1Da21/21C2 for Da>1 and
Vf /V0>C1Da21/51C2 for Da<1, with constantsC1 ,C2 de-
pending on the shape of the production term. For percola
flows, the lower bound is expressed asVf>K1U, where
again K1 is a constant depending onf. The most genera
upper bound, valid for flows of both classes, isVf<V0
1K2U @27#. We therefore see that percolating flows are co
strained to a linear dependence on the stirring intensityU
~see Sec. IV A, for numerical results!. Cellular flows have
more intriguing properties, as we will see in Sec. IV B: f
fast advection, Da!1, the front speed depends on the flo
velocity asVf}U1/4, to be compared with the lower boun
prediction}U1/5 and the upper bound}U; for slow advec-
tion, Da@1, we obtainVf}U3/4 to compare with the lower
bound}U1/2 and the upper bound}U. It is clear that these
bounds do not provide a sharp evaluation of the front sp
in the case of a cellular flow.

To close the overview of mathematical results, we ant
pate that a different upper bound for the front speed enha
ment can be obtained by reformulating the solutions of E
~1! in terms of a path integral~see Sec. II for details, and
references therein!. This bound yields an expression simila
to the one obtained in the absence of any flow, but with
effective diffusion coefficientDeff replacing the molecular
one. Explicitly, we show that

Vf<2ADeff

t r
sup

u

f ~u!

u
, ~4!

where the dependence ofDeff on the flow parameters and o
the molecular diffusion can be derived by the analysis of E
~1! when the production term has been switched off. Fo
cellular flow, we have the resultDeff;AULD0, @14,13#,
whereas for a shear flowDeff;(UL)2/D0 @29#. Inserting
these latter expressions in Eq.~4! we obtain the behavior
Vf}U1/4 for the cellular flow—also obtained by@30#—and
Vf}U for the shear flow, remarkably close to the observ
ones for Da!1. Furthermore, the upper bound~4! is sharp in
the regime where homogenization techniques apply~see Sec.
II and Appendix C!. In other words, for fast advection th
effect of the underlying flow can be compactly expressed
the renormalization of the diffusion coefficient. On the co
trary, for slow advection in a cellular flow, the front spee
departs significantly from the upper bound, with an increa
in front speed less prominent than in the fast advection
gime @31#. We will see in Sec. IV B that the main physica
mechanism accounting for this depletion is the appearanc
an effective reaction term as a consequence of the joint ef
of advection and reaction.

These observations lead us to argue that the effect
stirring velocity on front propagation can be in general su
marized in the renormalization of the two relevant para
eters:~i! an effective diffusivity, which is always larger tha
7-2
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FRONT PROPAGATION IN LAMINAR FLOWS PHYSICAL REVIEW E64 046307
the molecular one for an incompressible flow, and~ii ! an
effective production term, which is slower than the micr
scopic one for slow advection.

The remainder of the paper is organized as follows.
Sec. II, we derive some general results valid forall advective
flows. Section III presents the algorithm employed for t
numerical solution of Eq.~1!. In Sec. IV we discuss the
results of numerical simulations. Section V is devoted
conclusions and discussion. Technical and numerical de
are treated in the appendices.

II. UPPER BOUNDS TO FRONT SPEED

In this section we show how to establish the upper bou
~4! for the speed of front propagation in a generic inco
pressible flow and a generic production term. This resul
the consequence of the deeply rooted link existing betw
front propagation and advective transport. In other words,
will exploit the relationship of the solutions of Eq.~1! with
the solutions of the same equations in the absence of pro
tion terms. This will yield the constraint~4! involving the
front speedVf , the effective diffusion coefficientDeff , and
the production time scalet r . In general this relation is an
inequality and not a sharp functional relation. In a graphi
form, this amounts to say that ‘‘front propagatio
Þ ~advection1diffusion!1production.’’ A significant excep-
tion to this general rule is given by the limit of very slo
reaction~or very fast advection!, where the bound~4! be-
comes sharp. In this case, homogenization techniques,
tailed in Appendix A, allow to show that the problem of th
determination of the front speed reduces to the problem
determiningDeff . This is essentially due to the large sepa
tion of typical time scales.

We start our proof of the inequality~4! by recalling the
fundamental relation among the solution of the PDE~1! and
the trajectories of particles advected by a velocity fie
u(x,t) and subject to molecular diffusion@32,33#

u~x,t !5K u„r ~0!,0…expF E
0

t

c~u„r ~s!,s!…dsG L
h

, ~5!

where

c~u!5
1

t r

f ~u!

u

is the growth rate ofu. The average is performed over th
trajectories evolving according to the Langevin equation

dr ~ t !

dt
5v„r ~ t !,t…1A2D0h~ t ! ~6!

with final conditions r (t)5x. The white noise term
A2D0h(t) accounts for molecular diffusion.

Since the growth rate is always bounded from abo
c(u)<cmax[supu c(u), Eq. ~5! yields the inequality

u~ t,x!<^u„0,r ~0!…&exp~cmaxt !. ~7!
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For FKPP production terms the maximum occurs foru50,
that is, we havec(u)<c(0)5 f 8(0)/t r51/t r , therefore
cmax51/t r . In the inequality~7!, the term in angular bracket
denotes the probability that the trajectory ending atx was
initially located at the left of the front interface. Under ve
broad conditions, i.e., nonzero molecular diffusivity and
nite variance of the velocity vector potential@22,25,26#, it is
possible to show that asymptotically the particles underg
normal diffusion process with an effective diffusion coef
cient Deff , always larger than the molecular valueD0. This
is the rigorous and most general version of a statement o
nally due to Taylor@34#. The issue of single particle diffu
sion, and the problem of finding the effective diffusivit
given a velocity field and a molecular diffusivity, has be
the subject matter of a huge amount of work~see, e.g.,@35#
for a recent review!. In the presence of an asymptotic norm
diffusion, we can substitute the term̂u„0,r (0)…& with the
gaussian result 12 1

2 erfc(2x/A2Defft).exp@2x2/(4Defft)#/
A2pDefft, where the latter approximation holds with exp
nential accuracy. We thus obtainu(t,x)<exp@cmaxt
2x2/(4Defft)#/A2pDefft. It is therefore clear that at the poin
x the fieldu is exponentially small until a timet of the order
of x/A4Deffcmax. We therefore obtain the upper bound f
the front velocityVf<A4Deffcmax, as anticipated in Eq.~4!.

The analytic determination of the effective diffusivit
from the knowledge of the advective field and the value
the molecular diffusivity is, in general, a daunting task. Ne
ertheless there is an exact result valid for all flows in t
form of an upper bound for the effective diffusivityDeff
<D0(11a Pe2), wherea is a numerical constant that de
pends on the details of the flow@22,25,26#. Plugging this
relation into Eq.~4! we can derive a general upper bound

Vf /V0<A11a Pe2, ~8!

where any dependence on the flow details has been sum
rized in the numerical constanta. For large Pe we recove
the boundVf<const3U already discussed in Ref.@27#. In
the limit of small Pe, i.e., for small stirring intensityU, this
bound is in agreement with the Clavin-Williams relatio
(Vf2V0)/V05(U/V0)2 @10#. On the contrary, in the sam
limit, an asymptotic behavior like (Vf2V0)/V0;(U/V0)4/3,
proposed in Ref.@11#, is ruled out since the rate of conve
gence toV0 for vanishingU has to be faster or equal toU2 in
order to fulfill the bound~8!.

As anticipated above, there is a situation where the bo
~4! becomes sharp, and that is the limit of very slow reacti
It is easy to understand the physical reasons for this effec
t r is the slowest time scale under consideration, advec
and molecular diffusion act jointly to build an effective di
fusion process, unaffected by reaction. Diffusion decrea
the value of concentration to lower levels before the onse
production, which then takes place at the maximal rate~e.g.,
for FKPP, atu.0). In the limit of very slow reaction, basi
cally one has that Eq.~1!, at large scale and long time, be
haves as a reaction-diffusion equation~i.e., with u50),
whereD0 is replaced byDeff . Therefore, for FKPP nonlin-
7-3
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earity, using Eq.~2! one hasVf.2ADeff /t r . For a detailed
derivation of this statement, the reader is referred to App
dix A.

III. A DISCRETE-TIME APPROACH

Let us now briefly discuss the general idea of our num
cal approach to the study of front dynamics in terms
discrete-time maps.

The physical meaning of Eq.~5! is made clear by the limit
D050. In that case, introducing the Lagrangian time deri
tive

d

dt
5

]

]t
1u•¹,

Eq. ~1! reduces to

d

dt
u5

1

t r
f ~u!. ~9!

Denoting byFt the formal evolution operator of Eq.~6! with-
out noise (D050), i.e.,x(t)5Ftx(0), and byGt the evolu-
tion operator of (d/dt)u5(1/t r) f (u), i.e., u(t)5Gtu(0),
one can write the solution of Eq.~9! in the form

u~x,t !5Gtu~F2tx,0!. ~10!

Equation~10! is nothing but Eq.~5! in the absence of mo
lecular diffusivity, i.e., when only one path ends inx at time
t.

In the following, we will concentrate on laminar velocit
fields and we will develop a suitable framework to compu
some essential properties for these systems. In time-peri
velocity fieldsu(x,t1Dt)5u(x,t), whereDt is the period
and forD050 the Lagrangian motion can be described b
discrete-time dynamical system. In other words, the posi
x(t1Dt) is univoquely determined byx(t); in addition, be-
cause of the time periodicity, the mapx(t)→x(t1Dt) does
not depend ont. We remind that a periodic time dependen
is sufficient to induce Lagrangian chaos@36#.

With these considerations in mind, we can write a L
grangian map for the position

x~ t1Dt !5FDt„x~ t !…. ~11!

If u is incompressible, the map~11! is volume preserving,
i.e., its Jacobian matrix has unit determinant. In the follo
ing we will limit our analysis to the 2D case. In that situatio
the map~11! is symplectic, and the dynamics is described
a discrete-time version of a Hamiltonian system. Of cours
is not simple at all to find explicitlyFDt(x) for a generic
velocity field. On the contrary, it is not difficult to buildFDt
in such a way that the qualitative features of a given flow
well modeled, as we will show below.

Another situation, in which one obtains exactly a discre
time map ~11! for the Lagrangian motion, is the case
velocity field, which is always zero apart fromd impulses at
times t50,6Dt,62Dt,63Dt, . . . ,
04630
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u~x,t !5 (
n52`

`

v~x!d~ t2nDt !. ~12!

The effects of a nonzero diffusivity are taken into account
adding a noise term

x~ t1Dt !5FDt„x~ t !…1A2D0Dtw~ t !, ~13!

wherew(t) are standard independent Gaussian variables
If the production term also is zero apart fromd impulses,

f ~u!5 (
n52`

`

g~u!d~ t2nDt !, ~14!

one can introduce a reaction map

u~ t1Dt !5GDt„u~ t !…. ~15!

Now we are ready to write the dependence of the fieldu at
time t1Dt on the field at timet in terms of the advection and
reaction maps,FDt andGDt ,

u~x,t1Dt !5^GDt„u~FDt
21

„x2A2D0Dtw~ t !…,t !…&w .
~16!

Equation~16! is exactly equivalent to Eq.~5! for maps~for
velocity field and reaction given by periodicd impulses!.

The concentration field just after the kick,u(x,t10), can
be written as

u~x,t10!5GDt„u„FDt
21~x!,t……. ~17!

The concentration fieldu(x,t1Dt20) is obtained from
u(x,t10) solving the bare diffusion equation] tu5D0¹2u
with the initial condition given by Eq.~17!,

u~x,t1Dt20!

5
1

~2p!d/2E e2w2/2u~x2A2D0Dt w,t10!dw,

~18!

which is nothing but Eq.~16!, andd is the dimension of the
space,xPRd.

From an algorithmic point of view, the whole proce
betweent and t1Dt can be thus divided into three steps,
diffusive, an advective, and a reactive one. The first t
steps determine the origin of the Lagrangian trajectory e
ing in x and accordingly have to evolve backwards in tim
with a given noise realizationw. In the third step, the reac
tion at the pointx for the advected/diffused passive scalaru
is computed:~1! backward diffusion,x→x2A2D0Dtw; ~2!
backward advection via the Lagrangian map,x2A2D0Dtw
→F21(x2A2D0Dtw); ~3! forward reaction, u(t1Dt)
5GDt„u(t)….

Let us remark that Eq.~16! is exact if both the velocity
field and the reaction ared-pulsed processes. However on
can also use the formula~16! as a practical method for th
7-4
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FIG. 1. Two examples of reaction maps. On the left, FKPP type; on the right Arrhenius type.
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numerical integration of Eq.~1! if one assumes small enoug
Dt, so that the Lagrangian and reaction maps are given a
lowest order by

FDt~x!.x1u~x!Dt, GDt.u1
Dt

t r
f ~u!.

A. The choice of the reaction map

We now introduce a reaction mapGDt(u) corresponding
to FKPP nonlinearity. The map is characterized by an
stable fixed point inu50, a stable one inu51, and a convex
shape,

GDt~u!5~11aDt !u1O~Dtu2! for u.0,

GDt~u!512bDt~12u!1O„Dt~12u!2
… for u.1.

Similarly, for the Arrhenius case we define

GDt~u!5u1O~Dte2uc /u! for u.0,

GDt~u!512bDt~12u!1O„Dt~12u!2
… for u.1,

~see Fig. 1!. We expect from known results@5# for the time-
continuous PDE~1! that at a qualitative level, the details i
the shape ofGDt(u) are not very relevant, within a give
class of nonlinearities~e.g., FKPP!. This expectation is con
firmed by numerical simulations. Naturally, if one is inte
ested in the details of some specific combustion proces
one has to work with a precise shape ofGDt .

B. The choice of the Lagrangian map

If we limit our study to the two-dimensional~2D! case,
the incompressibility of the velocity field implies symple
ticity of the map~11!. A rather general class of symplect
maps is the following:

x~ t1Dt !5x~ t !1pDt„y~ t !…,

y~ t1Dt !5y~ t !1qDt„x~ t1Dt !…. ~19!
04630
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It is easy to verify that Eq.~19! is symplectic for any choice
of pDt(•) and qDt(•). If pDt(y)5kDt siny and qDt(x)
5kDt sinx one has the so-called Harper model~often stud-
ied in the quantum chaos context! corresponding to a chaoti
transport in spatially periodic cellular structures. The ca
qDt(x)50 gives a nonchaotic shear flow in thex direction.
The celebrated standard map@37#, which is a paradigmatic
model for chaotic behavior in low dimensional Hamiltonia
systems, is obtained withpDt(y)5kDt siny andqDt(x)5x.

In the following we will study two limit cases that give
nonchaotic transport, i.e., the role of the molecular diffus
ity is very important:~a! open flow field~shear flow! where
all the streamlines are open,~b! convective rolls where all
the streamlines are closed.

For the shear flow, we setqDt(x)50 in Eq.~19!, as men-
tioned above. For the cellular flows we have built the L
grangian map in the following way: consider a 2D incom
pressible steady velocity field u(x,y)
5„2]yc(x,y),]xc(x,y)… generated by the stream function

c~x,y!5
UL

2p
sinS 2px

L D sinS 2py

L D , ~20!

with L-periodic conditions iny and infinite extent along thex
axis. The Lagrangian mapFDt(x) is given by the exact inte-
gration of the equation (d/dt)x5u(x) on an intervalDt. The
shape ofFDt(x), i.e., the expression ofx(t1Dt) as a func-
tion of x(t) is found explicitly in terms of elliptic functions.

In addition to the cases~a! and ~b! we will study the
relevance of a ‘‘transversal’’ perturbation to the shear flo

IV. NUMERICAL RESULTS

Since we are interested in the front propagation in o
direction, say thex direction, we applied in our simulation
periodic boundary conditions iny direction,

u~x,y,t !5u~x,y1Ly ,t !, ~21!

whereas inx direction we have

lim
x→`

u~x,y,t !50, ~22!
7-5
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lim
x→2`

u~x,y,t !51. ~23!

In this way the front propagates from left to right.
The instantaneous front speedV(t) is defined by

V~ t !5
1

DtLy
E E dx dy@u~x,y,t1Dt !2u~x,y,t !#.

~24!

SinceV(t) in general shows some oscillations in time, o
can define the mean front speedVf by the time average ove
a sufficiently long time after the transient.

The numerical implementation of the formula~16! is de-
scribed in detail in Appendix C. We have first checked t
numerical code to confirm the known results for the fro
speedVf in the case of FKPP nonlinearity.

~i! Only molecular diffusion is present, i.e.,F(x)5x. In
this case, equivalent tou50, one has the discrete-time ve
sion of the FKPP formula~2!,

Vf5
2

Dt
AD0Dt ln@GDt8 ~0!#. ~25!

See Appendix B for its derivation.
~ii ! The reaction is very slow, i.e.,t r5Dt/ ln„GDt8 (0)…

@ta ~whereta is the advection time!. In this case homogeni
zation techniques can be applied~see, e.g.,@27# and Appen-
dix A! and one finds

Vf.
2

Dt
ADeffDt ln@GDt8 ~0!#52ADeff

t r
. ~26!

The effective diffusion coefficientDeff in the x direction is
defined by

Deff5 lim
t→`

^@x~ t !2x~0!#2&
2t

~27!

and in general must be computed numerically iterating
map ~13!.

In order to show the validity of the homogenization lim
~26! we consider a system where the lagrangian motion
given by the standard map

x~ t11!5x~ t !1K sin@y~ t !#,

y~ t11!5y~ t !1x~ t11! ~mod 2p!, ~28!

and the reaction mapG(u) is in the FKPP class,

G~u!5u1cu~12u! if c<1. ~29!

In the case ofc.1, in order to avoid an unbounded reactio
map, we use

G~u!5H u1cu~12u! for u<u*

12a~12u! for u.u* ,
~30!
04630
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where u* 5(c122Ac214)/2c and a5(c12
2Ac214)/(c221A41c2).

By varyingc one can change the ratio between the adv
tion time ta;O(1) and the reaction timet r51/lnG8(0)
51/ln(11c), i.e., the Damko¨hler number. Figure 2 showsVf
vs 1/c for K51 andK53. At larget r , i.e., largec21 the
homogenization limit is recovered.

We now move to the description of the numerical resu
in three case studies.

A. Shear flow

The shear flow is the simplest case to study and it will
presented here shortly. For our simulations we use the
tem ~19! with q50,

x~ t11!5x~ t !1U sin@2py~ t !/Ly#,

y~ t11!5y~ t !, ~31!

and a reaction mapG(u) of the shapes~29! and~30!, where
for the sake of simplicity we useDt51. While keeping fixed
the diffusivity we investigate the different regimes in th
(U,t r) space. Among all the possible combinations of diff
sion, advection, and reaction time scales, we assume in
paper always that diffusion is the slowest one.

The front velocity in the homogenization regime, i.e
very slow reaction, isVf.2ADeff /t r , whereDeff can be eas-
ily computed for the shear flow@29#: Deff2D0;U2/D0.
Therefore for slow reaction one has a linear behaviorVf
;U. The bounds discussed in the introduction suggest
in generalVf5aU1b wherea andb may depend ont r and
D0, as confirmed by recent numerical results@38#.

In Fig. 3 we show two snapshots of the concentration fi
for slow and fast reaction. In Fig. 4 the front velocity
displayed in dependence on the advection velocityU for dif-
ferent reaction times. Homogenization holds for slow re
tion rates; decreasingt r , the front speed increases until fo
high reaction rates the geometrical optics regime is reach

FIG. 2. Front speed for the standard map~28! with reaction map
given by Eqs.~29! and~30!, as function ofc, D050.04. The upper
curve is forK53.0, the lower forK51.0. The dotted lines are th
homogenization curves 2ADeff ln(1.01c). The diffusion coefficient
Deff depends onK and has been computed numerically.
7-6
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Our results obtained with the discrete-time map appro
are in perfect agreement with the direct numerical simu
tions presented in Ref.@38#, where the dynamical equation
are solved in the Eulerian framework.

B. Cellular flow

The numerical simulations have been performed using
velocity field u(x,y)5„2]yc(x,y),]xc(x,y)… generated by
the stream function defined in Eq.~20! and G(u) given by
Eqs.~29! and ~30! with c5Dt/t r andDt!t r . In Fig. 5 we
show a snapshot of the concentration field for two values
t r .

The key to the understanding of the different regimes
front propagation stands in the description of front dynam
in terms of effective macroscopic equations, which we int
duce hereafter, following Ref.@30#. The dynamics ofu is
characterized by the length scale of the cell size,L. We can
therefore perform a space discretization, which reduces e
cell Ci to a pointi mapping the domain—a two-dimension
infinite strip—to a one-dimensional lattice, and the fieldu to
a function defined on the latticeQ i5L22*Ci

udx dy. Inte-
grating Eq. ~1! over the cellCi we obtain Q̇ i5Ji 112Ji
1x i , where Ji5L22* leftD0]xudy is the flux of matter
through the left boundary of thei th cell, and x i

5L22*Ci
t r

21f (u)dxdy is the rate of change ofQ i due to
reaction taking place within the cell. We will show that it
possible to model the dynamics with a space-discreti
macroscopic reaction-diffusion equation,

FIG. 3. Snapshots of the fieldu(x,y) for the shear map~31! and
the reaction maps~29! and ~30!. U50.5, D050.01, c50.2, andc
52.0 for the upper and lower image, respectively. The system
is Ly52p andLx520p.
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Q̇ i5DeffS 1

2
Q i 112Q i1

1

2
Q i 21D1teff

21F~Q i !. ~32!

The effect of velocity is torenormalizethe values of diffu-
sivity, D0→Deff(D0 ,U,L), and reaction time-scale,t r
→teff(t r ,U,L), and therefore the advective term does n
appear any longer in the effective dynamics given by E
~32!. The assumption thatD andt are independently renor-
malized by advection is consistent in the regimeV0/U
5(Da/Pe)1/2!1. The renormalized diffusivityDeff accounts
for the process of diffusion from cell to cell resulting from
the nontrivial interaction of advection and molecular diffu
sion. The renormalized reaction timeteff amounts to the time
that it takes for a single cell to be completely burned, a
depends on the interaction of advection and production.
that context, the limiting speed of the front in the movin
medium will beVf.2ADeff /teff. The goal is now to derive
the expressions for the renormalized parameters from ph
cal considerations.

Renormalization of diffusivity.To obtain the value of
Deff , it is sufficient to neglect the reaction term in Eq.~1!,
i.e., consider a passive scalar in a cellular flow. The solut
is known @12–14#,

Deff

D0
;Pe1/2, Pe@1. ~33!

For large Pe (D0 small! the cell-to-cell diffusion mechanism
can be qualitatively understood in the following way: th
probability for a particle of the scalar to jump across th
boundary of the cell in a circulation timeL/U, by virtue of
molecular diffusion, can be estimated as the ratio of the d
fusive motion across the streamlines,O(AD0L/U), to advec-
tive motion along streamlines,O(L), leading to p
;@D0 /(UL)#1/2, hence the effective diffusivityDeff;pUL
;D0 Pe1/2.

Renormalization of reaction time.At small Da, where re-
action is significantly slower than advection, the cell is fir
invaded by a mixture of reactants and products~with a low
content of products,Q i!1) on the fast advective time scale

ze
FIG. 4. Front speed for the shear map~31!
and the reaction maps~29! and ~30! as function
of U for various reaction timest r51/ln(11c),
D050.04.
7-7
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and complete reaction (Q i51) is then achieved on the slow
time scaleteff.t r ~Fig. 6!. The area where the reaction tak
place extends over several cells, i.e., the front is ‘‘distr
uted.’’

At large Da, the ratio of time scales reverses, and i
~now short! time t r two well-separated phases emerge ins
the cell. The interface has a depthl;AD0t r
5L Pe21/2Da21/2, i.e., it is thin compared to the cell size
Here the process is characterized by an inward spiral mo
of the outer, stable phase~see Fig. 7! at a speed proportiona
to U as it usually happens for a front in a shear flow at la
Da. Indeed it is easy to show that, inside a cell, the prob
can be mapped to a front propagation in a shear flow
‘‘action-angle’’ variables@15#. Therefore theu51 phase fills
the whole cell on the advective time scale, givingteff
.L/U.

In summary, we have the following behavior for th
renormalized reaction time

teff

t r
;H 1, Da!1

Da, Da@1.
~34!

Now, we have all the information to derive the effectiv
speed of front propagation for a cellular flow. Recalling th
Vf;ADeff /teff, we have for the front velocity the final resu

FIG. 5. Snapshots of the fieldu(x,y) for cellular flow given by
the stream function~20! and the reaction maps~29! and ~30!, U
52.0, D050.01, t r55.0, andt r50.5 for the upper and lower im
age, respectively. The system size isLy52p andLx510p.

FIG. 6. Cellular flow: six snapshots of the fieldu within the
same cell at six successive times with a delayt/6 ~from left to right,
top to bottom!, as a result of the numerical integration of Eq.~1!.
Here Da.0.4, Pe.315. Black stands foru51, white foru50.
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Vf

V0
;H Pe1/4, Da!1, Pe@1

Pe1/4Da21/2, Da@1, Pe@1.
~35!

where we restricted ourselves to the most interesting c
Pe@1. At small Da the front propagates with an effectiv
velocity, which scales as the upper bound derived above,
is, as Pe1/4. At large Da front speed is less enhanced than
small Da: according to Eq.~35!, we haveVf /A4Deff /t r
;Da21/2 for Da@1. In terms of the typical velocity of the
cellular flow, we haveVf}U1/4 for ‘‘fast’’ advection (U
@L/t r , or equivalently, Da!1! whereas Vf}U3/4 for
‘‘slow’’ advection (U!L/t r or Da@1). The numerical re-
sults are shown in Fig. 8. The case of ‘‘fast’’ advection co
responds to the one with slow reaction, for which the hom
enization limit holds.

In the geometrical optics limit Da@1, Pe@1 the effective
speed of the front is proportional to the area of the interfa
that separates the two phases. In two dimensions, the in

FIG. 8. Cellular flow: the front speedVf as a function ofU, the
typical flow velocity withD050.04. The lower curve shows data
t r520.0 ~fast advection!. The upper curve shows data att r50.2
~slow advection!. For comparison, the scalingU1/4 and U3/4 are
shown as dotted and dashed lines, respectively. The horizontal
indicatesV0 ~the front speed without advection, i.e.,U50) for t r

50.2.

FIG. 7. Cellular flow: six snapshots of the fieldu within the
same cell at six successive times with a delay (L/U)/6 ~left to right,
top to bottom!. Here Da54, Pe5315. A spiral wave invades the
interior of the cell with a speed comparable toU.
7-8
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FRONT PROPAGATION IN LAMINAR FLOWS PHYSICAL REVIEW E64 046307
face is characterized by its lengthl and its depthl. We have
the relationshipVf;ll /(Lt r), which entails the result tha
the ratio of the length of the interface in a moving mediu
l , to the length in a medium at rest,L, is l /L;Vf /V0 and is
therefore larger than unity. The structure responsible for
elongation of the front edge is the spiral wave shown in F
7.

Finally, it is interesting to look at the shape of the effe
tive reaction termteff

21F(Q) appearing in the renormalize
equation~32!. As shown in Fig. 9, for small Da the effectiv
production term is indistinguishable from the ‘‘bare’’ on
Increasing Da, the reaction rate tends to reduce prog
sively, inducing the slow down of the front speed. The
fective potential shows a small region where the product
term is essentially the microscopic one, followed by an
termediate regime characterized by a linear dependenc
the cell-averaged concentration, with a slope directly prop
tional to Da21. That is in agreement with a typical effectiv
reaction timeteff;t r Da @cf. Eq. ~34!#.

We conclude the discussion on cellular flows by noti
that the scaling behaviorsVf vs U are in agreement with the
rigorous boundsVf>C1U1/51C2 and Vf>C3U1/21C4 for
slow and fast reactions@28#.

FIG. 9. Cellular flow: the renormalized reaction ter
t r /teffF(Q) vs Q for three different parameters: Da.4(h), Da
.2(s), and Da.0.4(3). The continuous line isf (u). The dotted
and dash-dotted lines have the slopes (0.2 and 0.4) proportion
Da21 in the region of slow advection.
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C. Percolating flow

In the previous sections we discussed pure cellular
pure shear flows. Now we investigate the transition betw
these two limiting cases. To this aim, we will use for th
Lagrangian motion the generalized Harper map,

x~ t11!5x~ t !1U siny~ t !,

y~ t11!5y~ t !1UT sinx~ t11! ~mod 2p!. ~36!

The caseUT50 corresponds to shear flow, whereasUT
5U gives a chaotic cellular flow.

In order to give an idea of the Lagrangian behavior of t
flow generated by Eq.~36! we show in Fig. 10 some trajec
tories at different value ofUT . For UTÞ0 the map~36!
exhibits chaotic behavior in some regions. At small value
UT one has basically a ballistic transport in thex direction
apart from small recirculation regions. ForUT;U a typical
‘‘cat’s eye’’ pattern appears with percolating channe
among the recirculation regions. A chaotic cellular flo
rather similar to the case of convective cells discussed
Sec. IV B ~apart from a rotation ofp/4) is obtained forUT
5U ~U large enough!, see Fig. 10. The behavior forUT
@U can be understood by a simple statistical argument v
for large K @37#: at very large values ofUT , y(t) changes
very rapidly, therefore the oscillatory term sin@y(t)# can be
considered as a zero mean random process and the var
x(t) is well approximated by a diffusive process withDeff
.U2/4.

In Fig. 11 we show snapshots of the concentration fi
for different reaction times. The natural question is how t
transition from pure shear to percolation and from cellu
flow to percolation, respectively, changes the front speed.
an intuitive basis we expect the front propagation to
slower in the cellular case than in the shear case. In Fig
we plot the front speed in dependence of the sidewindUT for
different reaction time scales. The diffusion coefficient of t
system~36! has been calculated in separate runs for the co
parison with the homogenization expectations.

Let us discuss the figure going from left to right, au
menting the sidewind. For zero sidewind, we recover
pure shear result, at the valueUT5U, we recover the pure
cellular flow result and if we go even beyond, for a ve
large sidewind, the reaction becomes relatively small a

to
r-
p

FIG. 10. Lagrangian dynamics of test pa
ticles evolving according to the Harper’s ma
~36! for different values ofUT with U51.5.
From top left moving clockwise:UT50.2, UT

50.8, UT51.5, andUT53.0.
7-9
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FIG. 11. Snapshots of the fieldu(x,y) for
percolating flow given by Eq.~36!. The reaction
map is given by Eq.~29! and ~30!. U51.5, UT

50.8, D050.01, c50.2, andc52.0 for the up-
per and lower image, respectively. The syste
size isLy52p andLx520p.
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thus we enter the homogenization regime. This transit
pure shear-pure cells is smooth as confirmed by the fig
The three horizontal lines show the asymptotic values
2ADeff /t r ~the value ofDeff does not change significantly a
a function ofUT if UT is large enough!.

D. Final remarks

In the preceding sections we have shown the results
the behavior ofVf as function ofU and t r for different
laminar flows discussing in detail the FKPP nonlinearity.
is natural to ask about the effects of the shape off (u) on the
front speedVf . In particular, it is interesting to know
whether the choice of an Arrhenius nonlinearity changes
nificantly the scenario presented in the previous sections

It is known that for ignition nonlinearity, i.e.,f (u)50 for
u,uc , and expectedly also in the Arrhenius case, the fl
can suppress front propagation. This effect, called fla
quenching, is absent for FKKP production terms. This obs
vation may lead to the assumption that the front evolut
could depend on the shape off (u) in a dramatic way. How-
ever, flame quenching takes place only if initial conditions
the fieldu are localized, i.e.,u is different from zero only in
a bounded region@6#. For the initial and boundary condition
that we use here@Eqs. ~22!#, the front propagates alway
@27,28#, also in the Arrhenius case. For that reason, we
not expect major differences in the scaling properties
propagation speeds. Indeed, in the particular geometry
use, i.e., an open flow with an infinite reservoir of burn
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material, the values ofVf in the case of Arrhenius nonlinear
ity are very similar to the ones obtained using the FK
nonlinearity. In Fig. 13 we showVf as a function ofU for the
cellular flow introduced in Sec. IV B in the case of Arrheniu
nonlinearity. The scaling lawsVf;U1/4 and Vf;U3/4 for
slow and fast reaction hold also in this case. Also for sh
and percolating flow we do not observe qualitative chan
when varying the shape off (u).

Although the qualitative behavior ofVf as a function of
the system parameters does not change for different reac
terms, there are differences in the front speed relaxation t
asymptotic value. In the case of FKPP nonlinearity~i.e.,
‘‘pulled’’ fronts !, without advection (u50), it is known@9#
that the front velocity relaxes algebraically slow to i
asymptotic value. Therefore one can expect some nume
difficulties to find out the value ofVf , in particular, for the
slow reaction case in which the front may interest a ve
large spatial region. With this ‘‘caveat’’ in mind, in ou
simulations we varied the system size to carefully check
convergence ofVf . Using Arrhenius nonlinearity~i.e.,
‘‘pushed’’ front! in the case without advection, it is know
that the convergence to the asymptotic value is exponent
fast. Also in presence of a velocity field we observe that
convergence is much faster than in the FKPP case.

V. SUMMARY AND CONCLUSIONS

Enhancement of front propagation by an underlying flo
is a generic phenomenon for advection-reaction-diffus
f

g

FIG. 12. Vf vs UT , the La-
grangian map is given by Eq.~36!,
the reaction mapG(u) is given by
Eqs. ~29! and ~30!. The three
curves correspond to c
50.1,1.0,10.0 ~from bottom to
top!, the ‘‘horizontal’’ velocity
has been fixed toU51.5 for all
curves. The asymptotic value o
2ADeff ln(11c) ~for the horizontal
direction! is shown by the three
horizontal lines, the correspondin
value of Deff has been calculated
numerically for largeUT .
7-10
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FRONT PROPAGATION IN LAMINAR FLOWS PHYSICAL REVIEW E64 046307
systems. A relevant question is how the front speedVf de-
pends on the detailed properties of the advective velo
field, in particular, on the typical velocityU. For an arbitrary
flow, it is extremely difficult to derive this dependence an
lytically. Here, we have shown that for all incompressib
flows there exists an upper bound to the front speed that l
it to a single global property of the flow, its effective diffu
sion coefficient. The analytic derivation of the effective d
fusivity for a given velocity field is itself a daunting task, b
several generic properties are known and some exact re
are available for simple flows. In the special case of f
advection, as compared to the reaction timescalet r , the up-
per bound is sharp, and therefore it is possible to obtain
dependence ofVf on U. When molecular diffusivity is smal
we haveVf;U for flows with open streamlines such as t
shear flow, andVf;U1/4 for cellular flows. For slow advec
tion, the bound ceases to be effective and one has to reso
numerical simulations in order to determine the front spe
We find that for open-streamline flows there is still a line
dependenceVf;U whereas cellular flows display aVf

;U3/4 dependence. Within the class of initial/boundary co
ditions for which no flame-quenching effect ever takes pla
those scaling laws appear to be universal with respect to
details of the reaction mechanism.

Which lessons can we draw from the present results
the open, challenging problem of front propagation in turb
lent flows? The main point that we want to emphasize is
central role played by the effective diffusion process in d
termining the front speed. That is a reflection of the de
rooted link between front propagation and transport prop
ties. The knowledge of turbulent transport has experience
significant progress in the past few years~see, e.g., Refs.@39#
and@40#!. We believe that those results will reveal helpful
shed light on the issue of front propagation in turbulent fl
~for a similar point of view, see Ref.@41#!.

FIG. 13. Cellular flow: the front speedVf as a function ofU, the
typical flow velocity in the case of Arrhenius production typ
f (u)5(12u)exp(2uc /u). The lower curve shows data att r52.0
anduc50.5 ~fast advection!. The intermediate curve att r52.0 and
uc50.2 shows the crossover from fast~right side! to slow advection
~left side!. The upper curve shows data att r50.2 anduc50.2 ~slow
advection!. For comparison, the scalingU1/4 andU3/4 are shown as
dotted and dashed lines, respectively.
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APPENDIX A: HOMOGENIZATION REGIME

In this appendix we present briefly the application of h
mogenization techniques@42# to the reaction-advection
diffusion equation~1!. We are interested in the large-tim
large-scale asymptotic for slow reaction time scales. Int
ducing the small parametere, we consider reaction time
t r5 t̄ re

22, and look at the solutions of Eq.~1! for times
O(e22) and scalesO(e21). The separation in time scale
allows a multi-scale treatment. Slow variablesX5ex andT
5e2t are introduced along with the fast variablesx and t.
Slow and fast variables are considered as being independ
As a consequence space derivatives act as]x1e]X and the
time derivative as] t1e2]T . The concentration field is ex
panded in a power series ine as u(x,t,X,T)
5u (0)(x,t,X,T)1eu (1)(x,t,X,T)1•••, and this expression
is plugged in Eq.~1!. At zeroth order ine the equation reads

] tu
(0)1u•“xu

(0)5D0¹x
2u (0).

Due to the dissipative nature of the latter equation, the so
tion at zeroth order will decay to its average value on f
time scales,

u (0)~x,t,X,T!5u (0)~X,T!.

At order e, we obtain the linear equation

] tu
(1)1u•“xu

(1)2D0¹x
2u (1)52u•“Xu (0),

which allows the solution

u (1)~x,t,X,T!5u (1)~X,T!1w~x,t !•“Xu (0)~X,T!,

provided that the auxiliary fieldw obeys the equation

] tw1u•“xw5D0¹x
2w2u.

Note that the production term has not yet shown up. It is
ordere2 that it enters the scene,

] tu
(2)1u•“xu

(2)2D0¹x
2u (2)

52]Tu (0)2u•“Xu (1)1D0¹X
2u (0)

12D0“x•“Xu (1)1
1

t̄ r

f ~u (0)!.

The solvability condition for the equation at second ord
requires that
7-11
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FIG. 14. Pictorial scheme of the numerical a
gorithm, as discussed in Appendix C. Here,ha

5A2D0DtWa, whereWa is a standard Gaussia
variable.
b

n
c

e

h
h
l

ic as
]Tu (0)5D0¹X
2u (0)2^u•“Xu (1)&1

1

t̄ r

f ~u (0)!,

where the brackets denote the average over the fast varia
Plugging the expression foru (1) into the solvability condi-
tion yields the effective, large-scale equation

]Tu (0)5(
i , j

Deff
i j ]XiXj

2 u (0)1
1

t̄ r

f ~u0!,

where Deff is in general a tensor with componentsDeff
i j

5D0d i j 2 1
2 ^uiwj1ujwi&. Considering the propagation i

thex direction only, we recover an effective equation, whi
is equivalent to Eq.~1! with an effective diffusivity. There-
fore the front propagates at a maximal speed~computed in
the original, fast variables! given by Vf

<2A(Deff /t r)@supu$ f (u)/u%#, for FKPP nonlinearity one
hasVf52ADeff /t r , whereDeff5Deff

11 .

APPENDIX B: FRONT SPEED FOR DISCRETE TIME
MAPS

The front speed~25! for discrete maps can be obtained b
simple considerations just following the standard way us
for the derivation ofVf in the continuous time limit,

]

]t
u5D0¹2u1

1

t r
f ~u!. ~B1!

Let us consider a front propagating from left to right. For t
sake of simplicity we discuss a FKPP nonlinearity for t
one-dimensional case. Forx→`, u(x,t) has an exponentia
shape

u~x,t !5eat2bx ~B2!

up to exponentially subleading terms. Inserting Eq.~B2! in
Eq. ~B1! and linearizing aroundu50 one has

a5D0b21
1

t r
f 8~0!. ~B3!

A saddle point argument gives a selection criterion, wh
allows for the determination of the front speed@9#,
04630
les.

h

y
d

e
e

h

Vf5min
b

a~b!

b
52AD0

t r
f 8~0!. ~B4!

Consider now the discrete-time reaction case, i.e.,

]

]t
u5D0¹2u1 (

n52`

`

g~u!d~ t2n!, ~B5!

where for sake of simplicity we adoptDt51 @see Eq.~14!#.
Indicating withG(u) the reaction map@see Eq.~15!# one

has

u~x,t10!5G„u~x,t20!….

Integrating the diffusion equation] tu5D0¹2u betweent
10 andt1120 one has

u~x,t1120!5
1

A2p
E e2w2/2G„u~x2A2D0 w,t10!…dw.

~B6!

Assuming the shape~B2! and linearizing aroundu50, i.e.,
G(u).G8(0)u, a simple Gaussian integration gives

ea(t11)2bx;exp@ ln G8~0!1D0b22bx1at#.

The above result implies

a5 ln G8~0!1D0b2,

this is nothing but Eq.~B3! now with lnG8(0) instead of
(1/t r) f 8(0). Thesame selection criterion gives

Vf52AD0 ln G8~0!. ~B7!

APPENDIX C: NUMERICAL METHOD

Since we are interested in propagation along thex axis,
we consider a slab with sidesLx@Ly . The boundary condi-
tions are periodic in they direction, u(x,y,t)5u(x,y
1Ly ,t). To fulfill the conditions~22!, limx→` u(x,y,t)50
and limx→2` u(x,y,t)51 numerically, we setu(0,y,t)51
andu(Lx ,y,t)50, which is a good approximation as long
the front leading edge has not reachedLx . We introduce a
7-12
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lattice of step sizeDx and Dy ~for sake of simplicity we
assumeDx5Dy) so that the fieldu(x,y,t) is defined on the
points xn,m5(nDx,mDy). The numerical code compute
un,m(t1Dt)5u(nDx,mDy,t1Dt) in terms ofun,m(t) using
Eq. ~16!. For each grid pointxn,m , one introducesN inde-
pendent standard Gaussian variablesWa, a51, . . . ,N, N

@1, and computesx̃n,m
a 5xn,m2A2D0 DtWa and finally

from this rn,m
a 5F21( x̃n,m

a ). For un,m(t1Dt) one needs the
values ofu at timet in the positionsrn,m

a . In general therm,n
a

are not on the grid points (nDx,mDy), nevertheless we ca
s-

re

un

s.

04630
compute the valueu(rn,m
a ,t) using linear interpolation from

un,m(t). Therefore we have

un,m~ t1Dt !5
1

N (
a51

N

G@u~rn,m
a ,t !#. ~C1!

Typically one has a good convergence forN550. To simu-
late the diffusion process we have to impose a relation
tweenD0 , Dx, andDt to insure that the diffusion transport
a particle over distances larger than the grid-si
A2D0Dt/Dx.1 ~see Fig 14!.
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